UK Power Network maintains the 132kV voltage level network and below. An important part of the distribution network is distributing this electricity across our regions through circuits. Electricity enters our network through Super Grid Transformers at substations shared with National Grid we call Grid Supply Points. It is then sent at across our 132 kV Circuits towards our grid substations and primary substations. These circuits can be viewed on the single line diagrams in our Long-Term Development Statements (LTDS) and the underlying data is then found in the LTDS tables. This dataset provides half-hourly current and power flow data across these named circuits from 2021 through to the previous month across our license areas. The data are aligned with the same naming convention as the LTDS for improved interoperability.
Care is taken to protect the private affairs of companies connected to the 132 kV network, resulting in the redaction of certain circuits. Where redacted, we provide monthly statistics to continue to add value where possible. Where monthly statistics exist but half-hourly is absent, this data has been redacted.
To find which circuit you are looking for, use the ‘ltds_line_name’ that can be cross referenced in the 132kV Circuits Monthly Data, which describes by month what circuits were triaged, if they could be made public, and what the monthly statistics are of that site. If you want to download all this data, it is perhaps more convenient from our public sharepoint: SharepointThis dataset is part of a larger endeavour to share more operational data on UK Power Networks assets. Please visit our Network Operational Data Dashboard for more operational datasets.Methological ApproachThe dataset is not derived, it is the measurements from our network stored in our historian. The measurement devices are taken from current transformers attached to the cable at the circuit breaker, and power is derived combining this with the data from voltage transformers physically attached to the busbar. The historian stores datasets based on a report-by-exception process, such that a certain deviation from the present value must be reached before logging a point measurement to the historian. We extract the data following a 30-min time weighted averaging method to get half-hourly values. Where there are no measurements logged in the period, the data provided is blank; due to the report-by-exception process, it may be appropriate to forward fill this data for shorter gaps. We developed a data redactions process to protect the privacy or companies according to the Utilities Act 2000 section 105.1.b, which requires UK Power Networks to not disclose information relating to the affairs of a business. For this reason, where the demand of a private customer is derivable from our data and that data is not already public information (e.g., data provided via Elexon on the Balancing Mechanism), we redact the half-hourly time series, and provide only the monthly averages. This redaction process considers the correlation of all the data, of only corresponding periods where the customer is active, the first order difference of all the data, and the first order difference of only corresponding periods where the customer is active. Should any of these four tests have a high linear correlation, the data is deemed redacted. This process is not simply applied to only the circuit of the customer, but of the surrounding circuits that would also reveal the signal of that customer. The directionality of the data is not consistent within this dataset. Where directionality was ascertainable, we arrange the power data in the direction of the LTDS "from node" to the LTDS "to node". Measurements of current do not indicate directionality and are instead positive regardless of direction. In some circumstances, the polarity can be negative, and depends on the data commissioner's decision on what the operators in the control room might find most helpful in ensuring reliable and secure network operation. Quality Control StatementThe data is provided "as is". In the design and delivery process adopted by the DSO, customer feedback and guidance is considered at each phase of the project. One of the earliest steers was that raw data was preferable. This means that we do not perform prior quality control screening to our raw network data. The result of this decision is that network rearrangements and other periods of non-intact running of the network are present throughout the dataset, which has the potential to misconstrue the true utilisation of the network, which is determined regulatorily by considering only by in-tact running arrangements. Therefore, taking the maximum or minimum of these measurements are not a reliable method of correctly ascertaining the true utilisation. This does have the intended added benefit of giving a realistic view of how the network was operated. The critical feedback was that our customers have a desire to understand what would have been the impact to them under real operational conditions. As such, this dataset offers unique insight into that. Assurance StatementCreating this dataset involved a lot of human data imputation. At UK Power Networks, we have differing software to run the network operationally (ADMS) and to plan and study the network (PowerFactory). The measurement devices are intended to primarily inform the network operators of the real time condition of the network, and importantly, the network drawings visible in the LTDS are a planning approach, which differs to the operational. To compile this dataset, we made the union between the two modes of operating manually. A team of data scientists, data engineers, and power system engineers manually identified the LTDS circuit from the single line diagram, identified the line name from LTDS Table 2a/b, then identified the same circuit in ADMS to identify the measurement data tags. This was then manually inputted to a spreadsheet. Any influential customers to that circuit were noted using ADMS and the single line diagrams. From there, a python code is used to perform the triage and compilation of the datasets. There is potential for human error during the manual data processing. These issues can include missing circuits, incorrectly labelled circuits, incorrectly identified measurement data tags, incorrectly interpreted directionality. Whilst care has been taken to minimise the risk of these issues, they may persist in the provided dataset. Any uncertain behaviour observed by using this data should be reported to allow us to correct as fast as possible.Additional InformationDefinitions of key terms related to this dataset can be
found in the Open
Data Portal Glossary.Download dataset information: <span Download dataset information: Metadata (JSON)<span We would be grateful if you find this dataset useful to
submit a “reuse” case study to tell us what you did and how you used it. This
enables us to drive our direction and gain better understanding for how we
improve our data offering in the future.