CCN, hygroscopicity, predicted cloud droplet numbers Weissfluhjoch

Cloud Condensation Nuclei (CCN) data: A Droplet Measurement Technologies (DMT) single-column continuous-flow streamwise thermal gradient chamber (CFSTGC; Roberts and Nenes, 2005) was deployed at the measurement site Weissfluhjoch (2700 m a.s.l., LON: 9.806475, LAT: 46.832964) to record the in-situ CCN number concentrations between February 24 and March 8 2019 for different supersaturations (SS). To account for the difference between the ambient (~735 mbar) and the calibration pressure (~800 mbar), the SS reported by the instrument is adjusted by a factor of 0.92. The CFSTGC was cycled between 6 discrete SS values ranging from 0.09% to 0.74%, producing a full CCN spectrum every hour. The raw CCN measurements are filtered to discount periods of transient operation and whenever the room temperature housing the instrument changed sufficiently to induce a reset in column temperature. Additional information can be found in Section 2.1.2 here.

Hygroscopicity data: The CCN number concentration measurements were directly related to the size distribution and total aerosol concentration data measured by the Scanning Mobility Particle Size Spectrometer (SMPS) instrument at the same station (https://www.envidat.ch/dataset/aerosol-data-weissfluhjoch) to infer the particles hygroscopicity parameter (kappa). For each SMPS scan, the particles critical dry diameter (Dcr) is estimated by integrating backward the SMPS size distribution, until the aerosol number matches the CCN concentration observed for the same time period as the SMPS scan. Assuming the particle chemical composition is internally mixed, the kappa is determined from Dcr and SS, applying Köhler theory. Additional information can be found in Section 2.2 here.

Predicted cloud droplet numbers: Droplet calculations are carried out with the physically based aerosol activation parameterization of Morales and Nenes (2014), employing the “characteristic velocity” approach of Morales and Nenes (2010). Aerosol size distribution observations required to predict the cloud droplet numbers and maximum in-cloud supersaturation are obtained from the SMPS instrument deployed at Weissfluhjoch. The required vertical velocity measurements are derived from the wind Doppler Lidar (https://www.envidat.ch/dataset/lidar-wind-profiler-data) deployed at Davos Wolfgang and are extracted for the altitude of interest, being 1100 m above ground level for Weissfluhjoch. Additional information can be found in Section 2.3 here.

Data and Resources

Additional Info

Field Value
Source
Version 1.0
Author [{"affiliation": "Laboratory of Atmospheric Processes and their Impacts, EPFL", "affiliation_02": "Center for Studies of Air Quality and Climate Change, ICE-HT/FORTH", "affiliation_03": "", "data_credit": ["collection", "validation", "curation", "software", "publication", "supervision"], "email": "[email protected]", "given_name": "Athanasios", "identifier": "", "name": "Nenes"}, {"affiliation": "Laboratory of Atmospheric Processes and their Impacts, EPFL", "affiliation_02": "", "affiliation_03": "", "data_credit": ["validation", "curation", "publication"], "email": "[email protected]", "given_name": "Paraskevi", "identifier": "", "name": "Georgakaki"}, {"affiliation": "Institute for Environmental Research & Sustainable Development, NOA", "affiliation_02": "", "affiliation_03": "", "data_credit": "collection", "email": "[email protected]", "given_name": "Aikaterini", "identifier": "", "name": "Bougiatioti"}]
Author Email
Maintainer {"affiliation": "LAPI, EPFL/ C-STACC, ICE-HT/FORTH", "email": "[email protected]", "given_name": "Athanasios", "identifier": "", "name": "Nenes"}
Maintainer Email
Shared (this field will be removed in the future) Open
IB1 Sensitivity Class
IB1 Trust Framework
IB1 Dataset Assurance
IB1 Trust Framework
Geographic Location 46 49’58.670”N 9 48’23.309”E
harvest_object_id de4a03da-0eee-4d5d-8b3a-8350a9fdec80
harvest_source_id 8fc5dcf9-738c-468f-985c-d55347a92f88
harvest_source_title EnviDat
parent RACLETS Field Campaign