BUTTER - Empirical Deep Learning Dataset

The BUTTER Empirical Deep Learning Dataset represents an empirical study of the deep learning phenomena on dense fully connected networks, scanning across thirteen datasets, eight network shapes, fourteen depths, twenty-three network sizes (number of trainable parameters), four learning rates, six minibatch sizes, four levels of label noise, and fourteen levels of L1 and L2 regularization each. Multiple repetitions (typically 30, sometimes 10) of each combination of hyperparameters were preformed, and statistics including training and test loss (using a 80% / 20% shuffled train-test split) are recorded at the end of each training epoch. In total, this dataset covers 178 thousand distinct hyperparameter settings ("experiments"), 3.55 million individual training runs (an average of 20 repetitions of each experiments), and a total of 13.3 billion training epochs (three thousand epochs were covered by most runs). Accumulating this dataset consumed 5,448.4 CPU core-years, 17.8 GPU-years, and 111.2 node-years.

Data and Resources

Additional Info

Field Value
Source https://data.openei.org/submissions/5708
Version
Author
Author Email
Maintainer
Maintainer Email
Shared (this field will be removed in the future) Open
IB1 Sensitivity Class
IB1 Trust Framework
IB1 Dataset Assurance
IB1 Trust Framework
GUID https://data.openei.org/submissions/5708
Language
dcat_issued 2022-05-20T06:00:00Z
dcat_modified 2023-06-06T06:14:40Z
dcat_publisher_name National Renewable Energy Laboratory
ib1_trust_framework []