Mapping Fracture Network Creation with Microseismicity During EGS Demonstrations

This a report for the project "Mapping Fracture Network Creation with Microseismicity During EGS Demonstrations". Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are often employed to identify microearthquakes in geothermal regions. However, most commonly used algorithms may miss events if the seismic signal of an earthquake is small relative to the background noise level or if a microearthquake occurs within the coda of a larger event. Consequently, we have developed a set of algorithms that provide improved microearthquake detection. Our objective is to investigate the microseismicity at the DOE Newberry EGS site to better image the active regions of the underground fracture network during and immediately after the EGS stimulation. Detection of more microearthquakes during EGS stimulations will allow for better seismic delineation of the active regions of the underground fracture system. This improved knowledge of the reservoir network will improve our understanding of subsurface conditions, and allow improvement of the stimulation strategy that will optimize heat extraction and maximize economic return.

This project is the FY14 continuation of FY13 AOP project 25728, which had its origins as the ARRA lab project AID 19981.

Data and Resources

Additional Info

Field Value
Source https://gdr.openei.org/submissions/432
Version
Author
Author Email
Maintainer
Maintainer Email
Shared (this field will be removed in the future) Open
IB1 Sensitivity Class
IB1 Trust Framework
IB1 Dataset Assurance
IB1 Trust Framework
GUID https://data.openei.org/submissions/3249
Language
dcat_issued 2014-04-18T06:00:00Z
dcat_modified 2017-06-22T22:35:06Z
dcat_publisher_name Lawrence Livermore National Laboratory
ib1_trust_framework []