Simulating Complex Fracture Systems in Geothermal Reservoirs Using an Explicitly Coupled Hydro-Geomechanical Model

Low permeability geothermal reservoirs can be stimulated by hydraulic fracturing to create Enhanced (or Engineered) Geothermal Systems (EGS) with higher permeability and improved heat transfer to increase heat production. In this paper, we document our effort to develop a numerical simulator with explicit geomechanics-discrete flow network coupling by utilizing and further advancing the simulation capabilities of the Livermore Distinct Element Code (LDEC). The important modules of the simulator include an explicit finite element solid solver, a finite volume method flow solver, a joint model using the combined FEM-DEM capability of LDEC, and an adaptive remeshing module. The numerical implementation is verified against the classical KGD model. The interaction between two fractures with simple geometry and the stimulation of a relatively complex existing fracture network under different in-situ stress conditions are studied with the simulator.

Data and Resources

Additional Info

Field Value
Source https://gdr.openei.org/submissions/168
Version
Author
Author Email
Maintainer
Maintainer Email
Shared (this field will be removed in the future) Open
IB1 Sensitivity Class
IB1 Trust Framework
IB1 Dataset Assurance
IB1 Trust Framework
GUID https://data.openei.org/submissions/3016
Language
dcat_issued 2011-01-01T07:00:00Z
dcat_modified 2017-05-23T21:17:58Z
dcat_publisher_name Lawrence Livermore National Laboratory
ib1_trust_framework []